|
|
Optical media types | |
---|---|
|
|
Standards | |
|
|
See also | |
|
A CD-R (Compact Disc-Recordable) is a variation of the Compact Disc invented by Philips and Sony. CD-R is a Write Once Read Many (WORM) optical medium, though the whole disk does not have to be entirely written in the same session.
CD-R retains a high level of compatibility with standard CD readers, unlike CD-RW - which can be re-written, but is not capable of playing on many readers, and also uses more expensive media.
Contents |
The CD-R, originally named CD Write-Once (WO), specification was first published in 1988 by Philips and Sony in the 'Orange Book'. The Orange Book consists of several parts, furnishing details of the CD-WO, CD-MO (Magneto-Optic), and CD-RW (ReWritable). The latest editions have abandoned the use of the term "CD-WO" in favor of "CD-R", while "CD-MO" were very little used. Written CD-Rs and CD-RWs are, from a technical standpoint, fully compatible with the Audio CD (Red Book) and CD-ROM (Yellow Book) standards, although some hardware compatible with Red Book CDs may have difficulty reading CD-Rs and especially CD-RWs. They use Eight-to-Fourteen Modulation, CIRC error correction plus the third error correction layer defined for CD-ROM.
CD-R recording systems available in 1990 were similar to the washing machine-sized Meridian CD Publisher, based on the two-piece rack mount Yamaha PDS audio recorder costing $35,000, not including the required external ECC circuitry for data encoding, SCSI hard drive subsystem, and MS-DOS control computer. By 1992 the cost of typical recorders was down to $10–12,000, and in September 1995 Hewlett-Packard introduced its model 4020i manufactured by Philips, which at $995 was the first recorder to cost less than $1000.[1]
The dye materials developed by Taiyo Yuden made it possible for CD-R discs to be compatible with Audio CD and CD-ROM discs.
Initially in the United States, there was a market separation between "music" CD-Rs and "data" CD-Rs, the former being several times more expensive than the latter due to industry copyright arrangements with the RIAA.[2] Physically, there is no difference between the discs save for the Disc Application Flag that identifies their type: standalone audio recorders will only accept "music" CD-Rs to enforce the RIAA arrangement, while computer CD-R drives can use either type of media to burn either type of content.[3]
A standard CD-R is a 1.2 mm (0.047 in) thick disc made of polycarbonate with a 120 mm (4.7 in) or 80 mm (3.150 in) diameter. The 120 mm disc has a storage capacity of 74 minutes of audio or 650 MiB of data. CD-R/RWs are available with capacities of 80 minutes of audio or 737,280,000 bytes (703 MiB), which they achieve by molding the disc at the tightest allowable tolerances specified in the Orange Book CD-R/CD-RW standards. The engineering margin that was reserved for manufacturing tolerance has been used for data capacity instead, leaving no tolerance for manufacturing; for these discs to be truly compliant with the Orange Book standard, the manufacturing process must be perfect.
Most CD-Rs on the market have an 80 minute capacity. There are also 90 minute/790 MiB and 99 minute/870 MiB discs, although they are less common (and violate the Orange Book standard; note that nothing in the Red, Yellow or Orange Book standards says that disc reading/writing devices may not have the capacity to read discs beyond the standard.) Some drives use special techniques, such as Plextor's GigaRec or Sanyo's HD-BURN to write more data onto a given disc; these techniques inherently are deviations from the Compact Disc (Red, Yellow, and/or Orange Book) standards, making the recorded discs proprietary-formatted and not fully compatible with standard CD players and drives. However, in certain applications where discs will not be distributed or exchanged outside a private group and will not be archived for a long time, a proprietary format may be an acceptable way to obtain greater capacity (up to 1.2 GB with GigaRec or 1.8 GB with HD-BURN on 99 minute media). Also, due to the limitations of the data structures in the ATIP (see below), 90 and 99 minute blanks will identify as 80 minute ones and have to be burned using "overburn" options in the CD recording software. (Overburning itself is so named because it is outside the written standards, but it has become a de facto standard function in most CD writing drives and software for them.)
(Note: While disc players and drives may have capabilities beyond the standards such that they are able to use nonstandard discs, there is no assurance, in the absence of explicit additional manufacturer specifications beyond normal Compact Disc logo certification, that any particular player or drive will perform beyond the standards at all or consistently. Furthermore, if the same device with no explicit performance specs beyond the Compact Disc logo initially handles nonstandard discs reliably but later stops doing so, there is no assurance that it can be fixed to do so again. Therefore, discs with capacities larger than 650 MiB and especially larger than 800 MiB are less interchangeable among players/drives and are not very suitable for archival use, as their readability on future equipment is not assured.)
The polycarbonate disc contains a spiral groove, called the "pregroove" (because it is molded in before data are written to the disc), to guide the laser beam upon writing and reading information. The pregroove is molded into the top side of the polycarbonate disc, where the pits and lands would be molded if it were a pressed (nonrecordable) Red Book CD; the bottom side, which faces the laser beam in the player or drive, is flat and smooth. The polycarbonate disc is coated on the pregroove side with a very thin layer of organic dye. Then, on top of the dye is coated a thin, reflecting layer of silver, a silver alloy, or gold. Finally, a protective coating of a photo-polymerizable lacquer is applied on top of the metal reflector and cured with UV-light.
A blank CD-R is not "empty"; the pregroove has a wobble (the ATIP), which helps the writing laser to stay on track and to write the data to the disc at a constant rate. Maintaining a constant rate is essential to ensure proper size and spacing of the pits and lands burned into the dye layer. As well as providing timing information, the ATIP (absolute time in pregroove) is also a data track containing information about the CD-R manufacturer, the dye used and media information (disc length etc). The pregroove is not destroyed when the data are written to the CD-R, a point which some copy protection schemes use to distinguish copies from an original CD.
There are three basic formulations of dye used in CD-Rs:
There are many hybrid variations of the dye formulations, such as Formazan by Kodak (a hybrid of cyanine and phthalocyanine).
Unfortunately, many manufacturers have added additional coloring to disguise their unstable cyanine CD-Rs in the past, so the formulation of a disc cannot be determined based purely on its color. Similarly, a gold reflective layer does not guarantee use of phthalocyanine dye. The quality of the disc is also not only dependent on the dye used, it is also influenced by sealing, the top layer, the reflective layer, and the polycarbonate. Simply choosing a disc based on its dye type may be problematic. Furthermore, correct power calibration of the laser in the writer, as well as correct timing of the laser pulses, stable disc speed, etc., is critical to not only the immediate readability but the longevity of the recorded disc, so for archiving it is important to have not only a high quality disc but a high quality writer. In fact, a high quality writer may produce adequate results with medium quality media, but high quality media cannot compensate for a mediocre writer, and discs written by such a writer cannot achieve their maximum potential archival lifetime.
Drive speed | Data rate | Write time for 80 minute/700 MiB CD-R |
---|---|---|
1X | 150 KiB/s | 80 minutes |
4X | 600 KiB/s | 20 minutes |
8X | 1200 KiB/s | 10 minutes |
12X | 1800 KiB/s | 6.7 minutes |
32X | 4800 KiB/s | 2.5 minutes (see below) |
52X | 7800 KiB/s | 1.5 minutes (see below) |
At higher write speeds, more time is used for overhead processes, such as organizing the files and tracks, which adds to the theoretical minimum.
Also, above 20X speed, drives use a Zoned-CLV or CAV strategy, where the advertised maximum speed is only reached near the outer rim of the disc.[4] This is not taken into account by the above table.
The blank disc has a pre-groove track onto which the data are written. The pre-groove track, which also contains timing information, ensures that the recorder follows the same spiral path as a conventional CD. A CD recorder writes data to a CD-R disc by pulsing its laser to heat areas of the organic dye layer. The writing process does not produce indentations (pits); instead, the heat permanently changes the optical properties of the dye, changing the reflectivity of those areas. Using a low laser power, so as not to further alter the dye, the disc is read back in the same way as a CD-ROM. However, the reflected light is modulated not by pits, but by the alternating regions of heated and unaltered dye. The change of the intensity of the reflected laser radiation is transformed into an electrical signal, from which the digital information is recovered ("decoded"). Once a section of a CD-R is written, it cannot be erased or rewritten, unlike a CD-RW. A CD-R can be recorded in multiple sessions. A CD recorder can write to a CD-R using several methods including:
With careful examination, the written and unwritten areas can be distinguished by the naked eye. CD-Rs are written from the center outwards, so the written area appears as an inner band with slightly different shading.
Real-life (not accelerated aging) tests have revealed that some CD-Rs degrade quickly even if stored normally.[5][6] The quality of a CD-R disc has a large and direct influence on longevity—cheap discs shouldn't be expected to last very long. According to a research conducted by J. Perdereau, CD-R are expected to have an average life expectancy of 10 years.[7] Unfortunately, branding isn't a reliable guide to quality, because many brands (major as well as no name) do not actually manufacture their own discs. Instead they are sourced from different manufacturers of varying quality. For best results, the actual manufacturer and material components should be verified of each batch of discs.
Burned CD-Rs suffer from material degradation, just like most writable media. CD-R media have an internal layer of dye used to store data. In a CD-RW disc, the recording layer is made of an alloy of silver and other metals — indium, antimony, and tellurium.[8] In CD-R media, the dye itself can degrade causing data to become unreadable.
As well as degradation of the dye, failure of a CD-R can be due to the reflective surface. While silver is less expensive and more widely used, it is more prone to oxidation resulting in a non-reflecting surface. Gold on the other hand, although more expensive and no longer widely used, is an inactive material and so, gold-based CD-Rs do not suffer from this problem.
It is recommended if using adhesive-backed paper labels that the labels be specially made for CD-Rs. An unlabeled CD is well balanced, so that it vibrates only slightly when rotated at high speed. Bad or improperly made labels, or labels applied off-center, unbalance the CD and can cause it to vibrate seriously when it spins, which causes read errors and even risks damaging the drive.[9]
Since CD-Rs in general cannot be logically erased to any degree, and as a result of this disposal of CD-Rs presents a possible security issue if it contains sensitive data. Destroying the data requires physically destroying the disc or data layer. Many office paper shredders are also designed to shred CDs.
Some recent burners do support erase operations on -R media (Plextor, LiteOn), by "overwriting" the stored data with strong laser power.
The polycarbonate material and possible gold or silver in the reflective layer would make CD-Rs highly recyclable. However, the polycarbonate is of very little value and the quantity of precious metals is so small that it isn't profitable to recover them.[10] Consequently, recyclers that accept CD-Rs typically do not offer compensation for donating or transporting the materials.[11][12]